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(57) ABSTRACT

In an embodiment, a processor includes a cache data array
including a plurality of physical ways, each physical way to
store a baseline way and a victim way; a cache tag array
including a plurality of tag groups, each tag group associated
with a particular physical way and including a first tag asso-
ciated with the baseline way stored in the particular physical
way, and a second tag associated with the victim way stored in
the particular physical way; and cache control logic to: select
a first baseline way based on a replacement policy, select a
first victim way based on an available capacity of a first
physical way including the first victim way, and move a first
data element from the first baseline way to the first victim
way. Other embodiments are described and claimed.
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1
DATA COMPRESSION IN PROCESSOR
CACHES

TECHNICAL FIELD

Embodiments relate generally to computer memory.

BACKGROUND

Conventionally, computing devices include a central pro-
cessor and main memory (e.g., random-access memory exter-
nal to the processor). The processor may read data and
instructions from the main memory, and may write execution
results to the main memory. Some processors may use cache
memory to store copies of data blocks that are also stored in
the main memory, and that may be required by the processor
in the near future. Thus, in the event that the cached data
blocks are required by the processor, these data blocks do not
have to transferred from the main memory. In this manner, the
cache memory may enable faster and/or more efficient execu-
tion by the processor.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS.1A-1B are block diagrams in accordance with one or
more embodiments.

FIGS. 2A-2G are block diagrams in accordance with one or
more embodiments.

FIGS. 3A-3B are sequences in accordance with one or
more embodiments.

FIG. 4 is ablock diagram of a processor in accordance with
an embodiment of the present invention.

FIG. 5 is a block diagram of a multi-domain processor in
accordance with another embodiment of the present inven-
tion.

FIG. 6 is a block diagram of an embodiment of a processor
including multiple cores.

FIG. 7 isablock diagram of a system in accordance with an
embodiment of the present invention.

FIG. 8 is a block diagram of a system on a chip in accor-
dance with an embodiment of the present invention.

DETAILED DESCRIPTION

In accordance with some embodiments, a physical cache
may store compressed data elements (e.g., blocks, lines, etc.),
and may be used to provide multiple logical cache levels.
Specifically, in some embodiments, the physical cache may
be used to provide a baseline cache and one or more victim
caches. The baseline cache may provide all or some of the
functionality of a conventional cache. Further, a victim cache
may store data evicted from the baseline cache (or another
victim cache). By providing additional caching functionality
beyond that of a conventional cache, embodiments may
reduce the number of main memory reads due to cache
misses, and may thereby improve overall system perfor-
mance.

Referring to FIG. 1A, shown is a block diagram of a system
100 in accordance with one or more embodiments. In some
embodiments, the system 100 may be all or a portion of any
electronic device, such as a cellular telephone, a computer, a
server, a blade, a media player, a network device, an appli-
ance, etc.

As shown in FIG. 1A, the system 100 may include a pro-
cessor 110 coupled to a memory 120. The memory 120 may
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be any type of computer memory (e.g., dynamic random
access memory (DRAM), static random-access memory
(SRAM), etc.).

As shown, the processor 110 may include cache compo-
nents 130. In one or more embodiments, the cache compo-
nents 130 may include a data array 150, a tag array 160,
control logic 140, and compression logic 145. In some
embodiments, the cache components 130 may represent a
single cache unit or level (or each of multiple cache units or
levels) of the processor 110. For example, the cache compo-
nents 130 may correspond to one or more of a first level cache,
a mid-level cache (MLC), a last level cache (LLC), etc.

In some embodiments, the data array 150 may include any
number of physical cache memory locations, which may be
referred to as “physical ways.” Such physical ways may each
include a specified number of segments. In some embodi-
ments, a segment may be the smallest data block that can be
stored in the data array 150. For example, in some embodi-
ments, each physical way may store 64 bytes, and may be
composed of eight segments of eight bytes each.

In one or more embodiments, each physical way of the data
array 150 may include functionality to store two or more
logical ways. In some embodiments, within a physical way,
each logical way may correspond to a different cache level.
For example, each physical way may include a baseline way
(corresponding to a first level) and a victim way (correspond-
ing to a second level).

In one or more embodiments, each logical way in the data
array 150 may be uniquely associated with a tag. Further, the
tag array 160 may include multiple tags, with each tag corre-
sponding to a different logical way. In some embodiments,
the tag array 160 may be used to locate the logical way storing
a particular data element. For example, a tag may include all
or a portion of an identifier (e.g., a memory address) associ-
ated with the data element. The functionality of the logical
ways and their associated tags is described further below with
reference to FIGS. 2A-2C.

In one or more embodiments, the compression logic 145
may include functionality to compress and/or decompress the
data stored in the data array 150. For example, in the event of
a cache miss, the compression logic 145 may receive uncom-
pressed data from the memory 120, and may compress the
data before it is stored in the data array 150. Further, in the
event of a cache hit, the compression logic 145 may decom-
press data stored in the data array 150 before it is provided to
an execution unit.

In some embodiments, the compression logic 145 may
provide a defined maximum compression ratio (e.g., two-to-
one, three-to-one, four-to-one, etc.). Further, the compression
logic 145 may use any number of compression algorithms or
methods. For example, the compression logic 145 may use
algorithms such as Huffman coding, arithmetic coding, run-
length encoding, Lempel-Ziv, Burrows Wheeler, etc.

In one or more embodiments, the control logic 140 may
include functionality to provide multiple logical cache units
or levels. Referring now to FIG. 1B, shown is a diagram 170
illustrating this functionality of the control logic 140. As
shown, in some embodiments, the control logic 140 may use
the data array 150 to provide a baseline cache 180 and a victim
cache 190.

In some embodiments, the baseline cache 180 may be a
logical cache providing similar functionality to that which
would be provided by the data array 150 if used as a conven-
tional cache. For example, the baseline cache 180 may store
compressed data, and may have the same capacity as that
which would be provided by the data array 150 if storing
uncompressed data. In another example, the baseline cache
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180 may provide the same replacement functionality that
would be provided by the data array 150 if used as a conven-
tional cache. For example, the baseline cache 180 may use
one or more conventional replacement policies (e.g., least
recently used (LRU), random replacement, least frequently
used, most recently used, pseudo-L.RU, segmented LRU, etc.)
to evict data elements.

In one or more embodiments, the victim cache 190 may be
a logical cache to store data elements evicted from the base-
line cache 180. In some embodiments, the victim cache 190
may store the evicted data elements in compressed form.
Further, in the event that a requested data element is not
included in the baseline cache 180 (i.e., a cache miss), the
victim cache 190 may be used to attempt to provide the
requested data element.

In some embodiments, the number of logical caches may
depend on the compression ratio of the stored data. For
example, assume that the diagram 170 shown in FIG. 1B
corresponds to a maximum compression ratio of two-to-one.
Thus, as shown in FIG. 1B, the data array 150 may be as two
logical caches, namely the baseline cache 180 and the victim
cache 190. In another example, assuming a compression ratio
of three-to-one, the data array 150 may be as three logical
caches, namely the baseline cache 180, the victim cache 190,
and a secondary victim cache (not shown). In this example,
the secondary victim cache may store data elements evicted
from the victim cache 190, and may be used in the event of a
cache miss in the victim cache 190. Itis contemplated that, in
such a manner, any number of victim caches may be provided.

Referring now to FIG. 2A, shown is an example of a physi-
cal way 210 in accordance with one or more embodiments.
The physical way 210 may correspond generally to an
example of one of multiple physical ways included in the data
array 150 (shown in FIG. 1A).

As shown, in this example, the physical way 210 may
include two logical ways, namely a baseline way 220 and a
victim way 230. Further, the baseline way 220 may be asso-
ciated with a first tag 242, and the victim way 230 may be
associated with a second tag 244. In some embodiments, the
first tag 242 and the second tag 244 may be included in the tag
array 160 (shown in FIG. 1A). As described above, in some
embodiments, the tag array 160 may be used to locate a
logical way storing a particular data element. Accordingly, in
the example of FIG. 2A, the first tag 242 may be used to
determine if a particular data element is stored in the baseline
way 220. Similarly, the second tag 244 may be used to deter-
mine if a particular data element is stored in the victim way
230.

In some embodiments, the sizes (i.e., storage capacities) of
the logical ways may be dynamically configurable to fill the
capacity of the physical way 210. For instance, assume that, in
the example of FIG. 2A, the physical way 210 includes eight
segments (not shown). Thus, in this example, the respective
sizes of the baseline way 220 and the victim way 230 may be
any combination that totals eight segments (e.g., 1 and 7, 3
and 5, 4 and 4, 6 and 2, etc.). In some embodiments, the sizes
of'the logical ways may be configured by the control logic 170
(shown in FIG. 1) based on the sizes of the data elements to be
stored in the logical ways.

In one more embodiments, the number of logical ways
included in each physical way 210 may correspond to the
maximum compression ratio of the stored data. For instance,
in the example shown in FIG. 2A, assume that the maximum
compression ratio of the stored data is two-to-one. Accord-
ingly, the physical way 210 may include two logical ways
(i.e., the baseline way 220 and the victim way 230).
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In some embodiments, the control logic 140 (shown in
FIG. 1A) may include functionality to provide logical caches
using these logical ways. For example, referring to FIGS. 1B
and 2A, the baseline cache 180 may include all of the baseline
ways 220 stored in the data array 150. Further, the victim
cache 190 may include all ofthe victim ways 230 stored in the
data array 150.

Referring now to FIG. 2B, shown is a second example in
which the maximum compression ratio is three-to-one.
Accordingly, the physical way 210 includes three logical
ways, namely the baseline way 220, the victim way 230, and
a secondary victim way 232. Further, these logical ways may
be respectively associated with the first tag 242, the second
tag 244, and a third tag 246. In some embodiments, all of the
secondary victim ways 232 stored in the data array 150 may
be used to form a secondary victim cache (not shown).

Referring to FIG. 2C, shown is a third example in which the
maximum compression ratio is four-to-one. Accordingly, the
physical way 210 includes four logical ways, namely the
baseline way 220, the victim way 230, the secondary victim
way 232, and a tertiary victim way 236. Further, these logical
ways may be respectively associated with the first tag 242, the
second tag 244, the third tag 246, and a fourth tag 248. In
some embodiments, all of the tertiary victim ways 236 stored
in the data array 150 may be used to form a tertiary victim
cache (not shown).

Referring now to FIGS. 2D-2E, shown is an example of a
first cache operation in accordance with one or more embodi-
ments. Specifically, FIG. 2D shows a starting state of the first
cache operation, and FIG. 2E shows an ending state of the first
cache operation.

Referring to FIG. 2D, shown is a cache unit 250 at the start
of the first cache operation. In particular, the cache unit 250
may correspond generally to the data array 150 shown in
FIGS. 1A-1B. As shown, the cache unit 250 may include four
physical ways, respectively labeled “W-0,” “W-1,” “W-2"
and “W-3.” Each of these physical ways may correspond
generally to the physical way 210 shown in FIGS. 2A-2C.

Assume that the cache unit 250 stores data using a maxi-
mum compression ratio of two-to-one. Accordingly, the
cache unit 250 includes two logical cache levels, namely the
baseline cache 180 and the victim cache 190. As shown, the
baseline cache 180 includes four baseline ways, and the vic-
tim cache 190 includes four victim ways. Note that, in this
example, each baseline way and victim way includes a data
element, thereby indicating that the baseline cache 180 and
the victim cache 190 are both full. Note also that each data
element is represented by a letter and a number (e.g., “D,3”).
Assume that, in each data element, the letter is an identifier for
the data element, and the number indicates the compressed
size of the data element (e.g., number of segments) when
stored in the baseline cache 180 or the victim cache 190.

Inthe example of FIG. 2D, a baseline way and a victim way
in vertical alignment may be stored together in a single physi-
cal way (e.g., as shown in FIG. 2A). For instance, in a given
physical way (e.g., “W-0"), the baseline way may correspond
to the baseline way 220 shown in FIG. 2A, the victim way
may correspond to the victim way 230 shown in FIG. 2A, and
both may be stored together in the physical way 210 shown in
FIG. 2A. Note that, as used herein, the physical way identifier
“W-x” may also be applied to a baseline way or victim way
included in that physical way. For example, the term “base-
line way W-1" may refer to the baseline way included in
physical way W-1.

For the sake of illustration, FIG. 2D shows the total used
capacity for each physical way (i.e., the total size of the data
elements stored in the physical way). For example, in physi-
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cal way W-0, the total used capacity (seven) is the sum of the
sizes of element D,3 and element F,4. In another example, in
the physical way W-1, the total used capacity (two) is the sum
of the sizes of element C,1 and element E,1.

Assume that the cache unit 250 receives a request 270 for
data element Z,6. In response to the request 270, a search for
the element 7,6 is performed in the baseline cache 180. How-
ever, in this example, the element Z,6 is not included in the
baseline cache 180, thereby resulting in a first cache miss. In
response to the first cache miss, a search for the element 7.6
is performed in the victim cache 190. As shown, the element
7.6 1s not included in the victim cache 190, thereby resulting
in asecond cache miss. Assume that, in response to the second
cache miss, the element 7,6 is obtained from an external
memory (e.g., memory 120 shown in FIG. 1A), and is pro-
vided to satisty the request 270 (e.g., to arequesting execution
unit).

In some embodiments, the baseline cache 180 may be
configured to store the most recently used data elements in
compressed form. Thus, because the element 7,6 is the most
recently used element in this example, a cache operation is
performed to store the element Z,6 in the baseline cache 180.
This cache operation may include compressing the element
7.6 (e.g., using compression logic 145 shown in FIG. 1A),
and selecting a way of the baseline cache 180 to store the
element 7,6. Assume that, in the example of FIG. 2D, the
control logic 140 (shown in FIG. 1A) uses a LRU replacement
policy for the baseline cache 180. Assume further that ele-
ment B,3 (stored in baseline way W-3) is the least recently
used element of the baseline cache 180. Accordingly, the
element B,3 is evicted from the baseline cache 180, and the
baseline way W-3 is thereby made available to store element
Z7.,6. Next, as shown in FIG. 2E, the element 7,6 is stored in
the baseline way W-3.

In one or more embodiments, the victim cache 190 may be
configured to store data elements evicted from the baseline
cache 180. Thus, the element B,3 (evicted from baseline way
W-3) may be stored in the victim cache 190. In particular, the
control logic 140 may select a victim way to receive the
evicted element B,3 based on the available capacity of the
physical way. For example, assume that the control logic 140
initially identifies the victim way W-2 based on a selection
policy (e.g., random selection, least-recently used, turn-
based, etc.). However, the control logic 140 may determine
that, if element B,3 is stored in victim way W-2, the total used
capacity of physical way W-2 would equal nine (i.e., the sum
of A,6 and B,3), and would thus exceed the maximum avail-
able capacity (i.e., eight). Therefore, assume that the control
logic 140 identifies another victim way using the selection
policy, namely victim way W-1. In this situation, the total
used capacity of physical way W-1 would equal four (i.e., the
sum of C,1 and B,3), and would thus would not exceed the
maximum available capacity. Accordingly, as shown in FIG.
2E, the control logic 140 may evict element E,1 from victim
way W-1, and may store element B,3 (evicted from baseline
way W-3) in victim way W-1.

In some embodiments, the control logic 140 may deter-
mine that, if element Z,6 is stored in baseline way W-3, the
total used capacity of physical way W-3 would equal ten (i.e.,
the sum of 7,6 and Y,4), and would thus exceed the maximum
available capacity (i.e., eight). Therefore, as shown in FIG.
2E, the control logic 140 may evict element Y,4 from victim
way W-3. Accordingly, the total used capacity of physical
way W-3 (i.e., six) does not exceed the maximum available
capacity.

Referring now to FIGS. 2F-2G, shown is an example of a
second cache operation in accordance with one or more
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embodiments. Specifically, FIG. 2F shows a starting state of
the second cache operation, and FIG. 2G shows an ending
state of the second cache operation Note that the starting state
of the cache unit 250 shown in FIG. 2F corresponds to the
starting state of the cache unit 250 shown in FIG. 2D.

Assume that, in the example of FIG. 2F, the cache unit 250
receives a request 280 for data element E, 1. In response to the
request 280, a search for the element E,1 is performed in the
baseline cache 180. However, in this example, the element
E,1 is not included in the baseline cache 180, thereby result-
ing in a cache miss. In response to the first cache miss, a
search for the element E,1 is performed in the victim cache
190. As shown, the element E,1 is stored in victim way W-1.
Therefore, the element E,1 is obtained from victim way W-1,
and is provided to satisfy the request 280. In some embodi-
ments, the element E,1 may be decompressed (e.g., using
compression logic 145 shown in FIG. 1A) before being pro-
vided to satisfy the request 280. Note that, by using the victim
cache 190, the cache miss in the baseline cache 180 is handled
without requiring a read of an external memory (e.g., memory
120 shown in FIG. 1A). Accordingly, in some embodiments,
cache performance may be improved over conventional
caches.

As noted above, the baseline cache 180 is configured to
store the most recently used data elements. Thus, a baseline
way of the baseline cache 180 is selected to store the data
element E,1. Assume that, as in the example of FIGS. 2D-2E,
the element B,3 (stored in baseline way W-3) is the least
recently used element of the baseline cache 180. Accordingly,
the element B,3 is evicted from the baseline cache 180, and
the baseline way W-3 is thereby made available to store the
element E,1. Further, as shown in FIG. 2G, the element E, 1 is
moved from victim way W-1 to the baseline way W-3.

As discussed above, in some embodiments, the control
logic 140 selects a victim way to receive the evicted element
B,3 based on the available capacity of the physical way.
Assume that, in this example, the control logic 140 randomly
selects the victim way W-3 to receive the evicted data. Fur-
ther, the control logic 140 determines that, if element B.3 is
stored in victim way W-3, the total used capacity of physical
way W-3 would equal four (i.e., the sum of E,1 and B,3), and
thus would be within the maximum available capacity (i.e.,
eight). Therefore, as shown in FIG. 2G, the control logic 140
may evict element Y,4 from victim way W-3, and may store
element B,3 (evicted from baseline way W-3) in victim way
W-3.

Referring now to FIG. 3A, shown is a sequence 300 in
accordance with one or more embodiments. In one or more
embodiments, the sequence 300 may be part of the control
logic 140 shown in FIG. 1A. The sequence 300 may be
implemented in hardware, software, and/or firmware. In firm-
ware and software embodiments it may be implemented by
computer executed instructions stored in a non-transitory
computer readable medium, such as an optical, semiconduc-
tor, or magnetic storage device. For the sake of illustration,
the steps involved in the sequence 300 may be described
below with reference to FIGS. 1A-1B and 2A-2G, which
show examples in accordance with some embodiments. How-
ever, the scope of the various embodiments discussed herein
is not limited in this regard.

At step 310, a request for a data element may be received.
For example, referring to FIGS. 1A and 2D, the control logic
140 may receive a request 270 for data element Z,6.

At step 315, a determination about whether the requested
data element is included in a logical baseline cache. For
example, referring to FIGS. 1A and 2D, the control logic 140
may determine whether a requested data element is located in
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the baseline cache 180. In one or more embodiments, this
determination may involve searching tags included in the tag
array 160. Further, in some embodiments, the baseline cache
may store data in compressed form.

If it is determined at step 315 that the requested data ele-
ment is included in the baseline cache, then at step 317, the
data element may be decompressed. For example, referring to
FIGS. 1A and 2D, the compression logic 145 may decom-
press a data element stored in the baseline cache 180.

At step 360, the uncompressed data element may be pro-
vided to the requesting entity. For example, referring to FIGS.
1A and 2D, the control logic 140 may provide the uncom-
pressed data element to an execution unit. After step 360, the
sequence 300 returns to step 310 to process any subsequent
requests for data elements.

However, if it is determined at step 315 that the requested
data element is not included in the baseline cache, then at step
320, a first way of the baseline cache may be evicted. For
example, referring to FIGS. 1A and 2D, the control logic 140
may evict element B,3 from baseline way W-3. An example
expansion of step 320 is discussed below with reference to
FIG. 3B.

At step 325, a determination about whether the requested
data element is included in a logical victim cache. For
example, referring to FIGS. 1A and 2D, the control logic 140
may determine whether the requested data element is located
in the victim cache 190. In some embodiments, this determi-
nation may involve searching the tag array 160.

If it is determined at step 325 that the data element is not
included in the victim cache, then at step 330, the uncom-
pressed data element may be obtained from an external source
(e.g., hard drive, memory, another cache, etc.). For example,
referring to FIGS. 1A and 2D, the control logic 140 may
obtain an uncompressed data element from the memory 120.

At step 333, the uncompressed data element may be com-
pressed. For example, referring to FIGS. 1A and 2D, the
compression logic 145 may compress the uncompressed data
element.

At step 336, the compressed data element may be stored in
the first way of the baseline cache (i.e., the baseline way
evicted in step 320). For example, referring to FIGS. 1A and
2E, the control logic 140 may store the compressed data
element 7,6 in the baseline way W-3. At step 360, the uncom-
pressed data element may be provided to the requesting
entity. After step 360, the sequence 300 returns to step 310 to
process any subsequent requests for data elements.

However, if it is determined at step 325 that the data ele-
ment is included in the victim cache, then at step 340, the
compressed data element may be stored in the first way of the
baseline cache (i.e., the baseline way evicted in step 320). For
example, referring to FIGS. 1A, 2F, and 2G, the control logic
140 may move the compressed data element E,1 from the
victim way W-1 to the baseline way W-3. In some embodi-
ments, the victim cache may store data in compressed form.

At step 350, the compressed data element may be decom-
pressed. For example, referring to FIGS. 1A and 2F, the
compression logic 145 may decompress the compressed data
element E, 1. Atstep 360, the uncompressed data element may
be provided to the requesting entity. After step 360, the
sequence 300 returns to step 310 to process any subsequent
requests for data elements.

Referring now to FIG. 3B, shown is a sequence 370 for
evicting a baseline way, in accordance with one or more
embodiments. In one or more embodiments, the sequence
370 may be part of the control logic 140 shown in FIG. 1A.
The sequence 370 may be implemented in hardware, soft-
ware, and/or firmware. In firmware and software embodi-
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ments it may be implemented by computer executed instruc-
tions stored in a non-transitory computer readable medium,
such as an optical, semiconductor, or magnetic storage
device.

In one or more embodiments, the sequence 370 may be an
exemplary expansion of step 320 shown in FIG. 3A. Thus, in
some embodiments, the sequence 370 may be performed in
the event that a requested data element is not located in a
baseline cache (i.e., a negative determination in step 315
shown in FIG. 3A). For the sake of illustration, the steps
involved in the sequence 370 may be described below with
reference to FIGS. 1A-1B and 2A-2G, which show examples
in accordance with some embodiments. However, the scope
of'the various embodiments discussed herein is not limited in
this regard.

At step 375, a first way of a baseline cache may be selected
based on a replacement policy. For example, referring to
FIGS. 1A and 2D, the control logic 140 may determine that
element B,3 stored in baseline way W-3 is the least recently
used element of the baseline cache 180, and may thus select
baseline way W-3 for eviction.

At step 380, a second way of a victim cache may be
selected based at least in part on the available capacity of the
physical way. For example, referring to FIGS. 1A and 2D, the
control logic 140 may initially identify the victim way W-1
based on one or more selection policies (e.g., random selec-
tion, least-recently used, turn-based, etc.). Further, the control
logic 140 may determine the size of the compressed data
element (i.e., element C,1) stored in baseline way W-1 (i.e.,
the baseline way included in the same physical way as the
victim way W-1). The control logic 140 may subtract the size
of data element C,1 (i.e., one) from the maximum capacity
size of physical way W-1 (i.e., eight) to determine the avail-
able capacity of physical way W-1 (i.e., seven). Thus, because
the size of evicted element B,3 (i.e., three) would not exceed
the available capacity of physical way W-1, the control logic
140 may select victim way W-1 to receive the evicted element
B,3. However, if the size of an evicted element would exceed
the available capacity of the physical way, the control logic
140 may select a different victim way (e.g., using a selection
policy), and may again determine whether the available
capacity is exceeded.

At step 385, the data element stored in the first way of the
baseline cache (selected at step 375) may be moved to the
second way of the victim cache (selected at step 380). For
example, referring to FIGS. 1A and 2D-2E, the control logic
140 may move the evicted data element B,3 from the baseline
way W-3 to the victim way W-1. After step 385, the sequence
370 ends.

Note that the examples shown in FIGS. 1A-1B, 2A-2G, and
3A-3B are provided for the sake of illustration, and are not
intended to limit any embodiments. For example, while the
processor 110 is shown in FIG. 1A as including one set of
cache components 130, it is contemplated that some embodi-
ments may include multiple sets of cache components 130
(e.g., in one or more of a first level cache, a mid-level cache
(MLC), a last level cache (LLC), etc.). In another example,
while the cache components 130 are shown in FIG. 1A as
located in the processor 110, it is contemplated that in some
embodiments, one or more of the cache components 130 may
be external to the processor 110. Further, while embodiments
may be shown in simplified form for the sake of clarity,
embodiments may include any number and/or arrangement of
processors, cores, and/or additional components (e.g., buses,
storage media, connectors, power components, buffers, inter-
faces, sub-components, etc.). It is contemplated that specifics
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in the examples shown in FIGS. 1A-1B, 2A-2G, and 3A-3B
may be used anywhere in one or more embodiments.

Referring now to FIG. 4, shown is a block diagram of a
processor in accordance with an embodiment of the present
invention. As shown in FIG. 4, the processor 400 may be a
multicore processor including first die 405 having a plurality
of cores 410a-410n of a core domain. The various cores
410a-41072 may be coupled via an interconnect 415 to a
system agent or uncore domain that includes various compo-
nents. As seen, the uncore domain may include a shared cache
430. In addition, the uncore may include an integrated
memory controller 440, a power control unit (PCU) 470, and
various interfaces 450.

Although not shown for ease of illustration in FIG. 4, in
some embodiments, the processor 400 may include some or
all of the functionality of one or more of the cache compo-
nents 130 described above with reference to FIGS. 1A-1B,
2A-2G, and 3A-3B. For example, a core 410 and/or the shared
cache 430 may include some or all of the functionality of the
data array 150, the tag array 160, the control logic 140, and/or
the compression logic 145 described above.

With further reference to FIG. 4, the processor 400 may
communicate with a system memory 460, e.g., via a memory
bus. In addition, by interfaces 450, connection can be made to
another processor, or various off-package components such
as peripheral devices, mass storage and so forth. While shown
with this particular implementation in the embodiment of
FIG. 4, the scope of the present invention is not limited in this
regard.

Referring now to FIG. 5, shown is a block diagram of a
multi-domain processor in accordance with another embodi-
ment of the present invention. As shown in the embodiment of
FIG. 5, processor 500 includes multiple domains. Specifi-
cally, a core domain 510 can include a plurality of cores
510a-510n, a graphics domain 520 can include one or more
graphics engines, and a system agent domain 550 may further
be present. Note that while only shown with three domains,
understand the scope of the present invention is not limited in
this regard and additional domains can be present in other
embodiments. For example, multiple core domains may be
present each including at least one core.

In general, each core 510 may further include low level
caches in addition to various execution units and additional
processing elements. In turn, the various cores may be
coupled to each other and to a shared cache memory formed
of a plurality of units of a last level cache (LLC) 540a-540z.
In various embodiments, LL.LC 540 may be shared amongst
the cores and the graphics engine, as well as various media
processing circuitry.

As seen, a ring interconnect 530 thus couples the cores
together, and provides interconnection between the cores,
graphics domain 520 and system agent circuitry 550. In some
embodiments, the ring interconnect 530 may be a multiplexor
orcrossbar device. In the embodiment of FIG. 5, system agent
domain 550 may include display controller 552 which may
provide control of and an interface to an associated display.
As further seen, system agent domain 550 may also include a
power control unit 555 to allocate power to the CPU and
non-CPU domains.

As further seen in FIG. 5, processor 500 can further include
an integrated memory controller (IMC) 570 that can provide
for an interface to a system memory, such as a dynamic
random access memory (DRAM). Multiple interfaces 580a-
580n may be present to enable interconnection between the
processor and other circuitry. For example, in one embodi-
ment at least one direct media interface (DMI) interface may
be provided as well as one or more Peripheral Component
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Interconnect Express (PCI Express™ (PCle™)) interfaces.
Still further, to provide for communications between other
agents such as additional processors or other circuitry, one or
more interfaces in accordance with an Intel® Quick Path
Interconnect (QPI) protocol may also be provided. As further
seen, a peripheral controller hub (PCH) 590 may also be
present within the processor 500, and can be implemented on
a separate die, in some embodiments. Alternatively, in some
embodiments, the PCH 590 may be external to the processor
500. Although shown at this high level in the embodiment of
FIG. 5, understand the scope of the present invention is not
limited in this regard.

Although not shown for ease of illustration in FIG. 5, in
some embodiments, the processor 500 may include some or
all of the functionality of one or more of the cache compo-
nents 130 described above with reference to FIGS. 1A-1B,
2A-2G, and 3A-3B. For example, a core 510 and/or the LL.C
540 may include some or all of the functionality of the data
array 150, the tag array 160, the control logic 140, and/or the
compression logic 145 described above.

Referring to FIG. 6, an embodiment of a processor includ-
ing multiple cores is illustrated. Processor 1100 includes any
processor or processing device, such as a microprocessor, an
embedded processor, a digital signal processor (DSP), a net-
work processor, a handheld processor, an application proces-
sor, a co-processor, a system on a chip (SOC), or other device
to execute code. Processor 1100, in one embodiment,
includes at least two cores—cores 1101 and 1102, which may
include asymmetric cores or symmetric cores (the illustrated
embodiment). However, processor 1100 may include any
number of processing eclements that may be symmetric or
asymmetric.

In one embodiment, a processing element refers to hard-
ware or logic to support a software thread. Examples of hard-
ware processing elements include: a thread unit, a thread slot,
a thread, a process unit, a context, a context unit, a logical
processor, a hardware thread, a core, and/or any other ele-
ment, which is capable of holding a state for a processor, such
as an execution state or architectural state. In other words, a
processing element, in one embodiment, refers to any hard-
ware capable of being independently associated with code,
such as a software thread, operating system, application, or
other code. A physical processor typically refers to an inte-
grated circuit, which potentially includes any number of other
processing elements, such as cores or hardware threads.

A core often refers to logic located on an integrated circuit
capable of maintaining an independent architectural state,
wherein each independently maintained architectural state is
associated with at least some dedicated execution resources.
In contrast to cores, a hardware thread typically refers to any
logic located on an integrated circuit capable of maintaining
anindependent architectural state, wherein the independently
maintained architectural states share access to execution
resources. As can be seen, when certain resources are shared
and others are dedicated to an architectural state, the line
between the nomenclature of a hardware thread and core
overlaps. Yet often, a core and a hardware thread are viewed
by an operating system as individual logical processors,
where the operating system is able to individually schedule
operations on each logical processor.

Physical processor 1100, as illustrated in FIG. 6, includes
two cores, cores 1101 and 1102. Here, cores 1101 and 1102
are considered symmetric cores, i.e. cores with the same
configurations, functional units, and/or logic. In another
embodiment, core 1101 includes an out-of-order processor
core, while core 1102 includes an in-order processor core.
However, cores 1101 and 1102 may be individually selected
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from any type of core, such as a native core, a software
managed core, a core adapted to execute a native instruction
set architecture (ISA), a core adapted to execute a translated
ISA, a co-designed core, or other known core. Yet to further
the discussion, the functional units illustrated in core 1101 are
described in further detail below, as the units in core 1102
operate in a similar manner.

As shown, core 1101 includes two hardware threads 1101a
and 11015, which may also be referred to as hardware thread
slots 1101a and 11015. Therefore, software entities, such as
an operating system, in one embodiment potentially view
processor 1100 as four separate processors, i.e., four logical
processors or processing elements capable of executing four
software threads concurrently. As alluded to above, a first
thread is associated with architecture state registers 1101a, a
second thread is associated with architecture state registers
11015, a third thread may be associated with architecture
state registers 1102a, and a fourth thread may be associated
with architecture state registers 11025. Here, each of the
architecture state registers (1101a, 11015, 11024, and 11025)
may be referred to as processing elements, thread slots, or
thread units, as described above.

As illustrated, architecture state registers 1101a are repli-
cated in architecture state registers 11015, so individual
architecture states/contexts are capable of being stored for
logical processor 1101« and logical processor 11015. In core
1101, other smaller resources, such as instruction pointers
and renaming logic in allocator and renamer block 1130 may
also be replicated for threads 1101¢ and 110154. Some
resources, such as re-order buffers in reorder/retirement unit
1135, ILTB 1120, load/store buffers, and queues may be
shared through partitioning. Other resources, such as general
purpose internal registers, page-table base register(s), low-
level data-cache and data-TL.B 1115, execution unit(s) 1140,
and portions of out-of-order unit 1135 are potentially fully
shared.

Processor 1100 often includes other resources, which may
be fully shared, shared through partitioning, or dedicated
by/to processing elements. In FIG. 6, an embodiment of a
purely exemplary processor with illustrative logical units/
resources of a processor is illustrated. Note that a processor
may include, or omit, any of these functional units, as well as
include any other known functional units, logic, or firmware
not depicted. As illustrated, core 1101 includes a simplified,
representative out-of-order (000) processor core. But an in-
order processor may be utilized in different embodiments.
The 000 core includes a branch target buffer 1120 to predict
branches to be executed/taken and an instruction-translation
buffer (I-TLB) 1120 to store address translation entries for
instructions.

Core 1101 further includes decode module 1125 coupled to
fetch unit 1120 to decode fetched elements. Fetch logic, in
one embodiment, includes individual sequencers associated
with thread slots 1101a, 11015, respectively. Usually core
1101 is associated with a first ISA, which defines/specifies
instructions executable on processor 1100. Often machine
code instructions that are part of the first ISA include a portion
of the instruction (referred to as an opcode), which refer-
ences/specifies an instruction or operation to be performed.
Decode logic 1125 includes circuitry that recognizes these
instructions from their opcodes and passes the decoded
instructions on in the pipeline for processing as defined by the
first ISA. As a result of the recognition by decoders 1125, the
architecture or core 1101 takes specific, predefined actions to
perform tasks associated with the appropriate instruction. Itis
important to note that any of the tasks, blocks, operations, and
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methods described herein may be performed in response to a
single or multiple instructions; some of which may be new or
old instructions.

In one example, allocator and renamer block 1130 includes
an allocator to reserve resources, such as register files to store
instruction processing results. However, threads 1101a and
11015 are potentially capable of out-of-order execution,
where allocator and renamer block 1130 also reserves other
resources, such as reorder buffers to track instruction results.
Unit 1130 may also include a register renamer to rename
program/instruction reference registers to other registers
internal to processor 1100. Reorder/retirement unit 1135
includes components, such as the reorder butfers mentioned
above, load buffers, and store buffers, to support out-of-order
execution and later in-order retirement of instructions
executed out-of-order.

Scheduler and execution unit(s) block 1140, in one
embodiment, includes a scheduler unit to schedule instruc-
tions/operation on execution units. For example, a floating
point instruction is scheduled on a port of an execution unit
that has an available floating point execution unit. Register
files associated with the execution units are also included to
store information instruction processing results. Exemplary
execution units include a floating point execution unit, an
integer execution unit, a jump execution unit, a load execution
unit, a store execution unit, and other known execution units.

Lower level data cache and data translation buffer (D-TLB)
1150 are coupled to execution unit(s) 1140. The data cache is
to store recently used/operated on elements, such as data
operands, which are potentially held in memory coherency
states. The D-TLB 1150 is to store recent virtual/linear to
physical address translations. As a specific example, a pro-
cessor may include a page table structure to break physical
memory into a plurality of virtual pages.

Here, cores 1101 and 1102 share access to higher-level or
further-out cache 1110, which is to cache recently fetched
elements. Note that higher-level or further-out refers to cache
levels increasing or getting further away from the execution
unit(s). In one embodiment, higher-level cache 1110 is a
last-level data cache—Iast cache in the memory hierarchy on
processor 1100—such as a second or third level data cache.
However, higher level cache 1110 is not so limited, as it may
be associated with or includes an instruction cache. A trace
cache—a type of instruction cache—instead may be coupled
after decoder 1125 to store recently decoded traces. In the
depicted configuration, processor 1100 also includes bus
interface module 1105 and a power controller 1160, which
may perform power management in accordance with an
embodiment of the present invention.

Historically, controller 1170 has been included in a com-
puting system external to processor 1100. In this scenario, bus
interface 1105 is to communicate with devices external to
processor 1100, such as system memory 1175, a chipset (of-
ten including a memory controller hub to connect to memory
1175 and an I/O controller hub to connect peripheral devices),
a memory controller hub, a northbridge, or other integrated
circuit. And in this scenario, bus 1105 may include any known
interconnect, such as multi-drop bus, a point-to-point inter-
connect, a serial interconnect, a parallel bus, a coherent (e.g.
cache coherent) bus, a layered protocol architecture, a difter-
ential bus, and a GTL bus.

Memory 1175 may be dedicated to processor 1100 or
shared with other devices in a system. Common examples of
types of memory 1175 include DRAM, SRAM, non-volatile
memory (NV memory), and other known storage devices.
Note that device 1180 may include a graphic accelerator,
processor or card coupled to a memory controller hub, data
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storage coupled to an I/O controller hub, a wireless trans-
ceiver, a flash device, an audio controller, a network control-
ler, or other known device.

Note however, that in the depicted embodiment, the con-
troller 1170 is illustrated as part of processor 1100. Recently,
as more logic and devices are being integrated on a single die,
such as SOC, each of these devices may be incorporated on
processor 1100. For example in one embodiment, memory
controller hub 1170 is on the same package and/or die with
processor 1100. Here, a portion of the core (an on-core por-
tion) includes one or more controller(s) 1170 for interfacing
with other devices such as memory 1175 or a graphics device
1180. The configuration including an interconnect and con-
trollers for interfacing with such devices is often referred to as
an on-core (or un-core configuration). As an example, bus
interface 1105 includes a ring interconnect with a memory
controller for interfacing with memory 1175 and a graphics
controller for interfacing with graphics processor 1180. Yet,
in the SOC environment, even more devices, such as the
network interface, co-processors, memory 1175, graphics
processor 1180, and any other known computer devices/in-
terface may be integrated on a single die or integrated circuit
to provide small form factor with high functionality and low
power consumption.

Although not shown for ease of illustration in FIG. 6, in
some embodiments, the processor 1100 may include some or
all of the functionality of one or more of the cache compo-
nents 130 described above with reference to FIGS. 1A-1B,
2A-2G, and 3A-3B. For example, core 1101, core 1102,
lower-level data cache and data translation buffer 1150, and/
or higher level cache 1110 may include some or all of the
functionality of the data array 150, the tag array 160, the
control logic 140, and/or the compression logic 145 described
above.

Embodiments may be implemented in many different sys-
tem types. Referring now to FIG. 7, shown is a block diagram
of'a system in accordance with an embodiment of the present
invention. As shown in FIG. 7, multiprocessor system 600 is
a point-to-point interconnect system, and includes a first pro-
cessor 670 and a second processor 680 coupled via a point-
to-point interconnect 650. As shown in FIG. 7, each of pro-
cessors 670 and 680 may be multicore processors, including
first and second processor cores (i.e., processor cores 674a
and 6745 and processor cores 684a and 684b), although
potentially many more cores may be present in the proces-
SOIS.

Still referring to FIG. 7, first processor 670 further includes
amemory controller hub (MCH) 672 and point-to-point (P-P)
interfaces 676 and 678. Similarly, second processor 680
includes a MCH 682 and P-P interfaces 686 and 688. As
shown in FIG. 7, MCH’s 672 and 682 couple the processors
to respective memories, namely a memory 632 and a memory
634, which may be portions of system memory (e.g., DRAM)
locally attached to the respective processors. First processor
670 and second processor 680 may be coupled to a chipset
690 via P-P interconnects 652 and 654, respectively. As
shown in FIG. 7, chipset 690 includes P-P interfaces 694 and
698.

Furthermore, chipset 690 includes an interface 692 to
couple chipset 690 with a high performance graphics engine
638, by a P-P interconnect 639. In turn, chipset 690 may be
coupled to a first bus 616 via an interface 696. As shown in
FIG. 7, various input/output (I/O) devices 614 may be
coupled to first bus 616, along with a bus bridge 618 which
couples first bus 616 to a second bus 620. Various devices may
be coupled to second bus 620 including, for example, a key-
board/mouse 622, communication devices 626 and a data
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storage unit 628 such as a disk drive or other mass storage
device which may include code 630, in one embodiment.
Further, an audio /O 624 may be coupled to second bus 620.
Embodiments can be incorporated into other types of systems
including mobile devices such as a smart cellular telephone,
tablet computer, netbook, Ultrabook™, or so forth.

Although not shown for ease of illustration in FIG. 7, in
some embodiments, any portion of the multiprocessor system
600 may include some or all of the functionality of one or
more of the cache components 130 described above with
reference to FIGS. 1A-1B, 2A-2G, and 3A-3B. For example,
processor 670 and/or processor 680 may include some or all
of'the functionality of the data array 150, the tag array 160, the
control logic 140, and/or the compression logic 145 described
above.

It should be understood that a processor core may support
multithreading (executing two or more parallel sets of opera-
tions or threads), and may do so in a variety of ways including
time sliced multithreading, simultaneous multithreading
(where a single physical core provides a logical core for each
of the threads that physical core is simultaneously multi-
threading), or a combination thereof (e.g., time sliced fetch-
ing and decoding and simultaneous multithreading thereafter
such as in the Intel® Hyperthreading technology).

Any processor described herein may be a general-purpose
processor, such as a Core™ i3, i5, 17, 2 Duo and Quad,
Xeon™, Ttanium™, XScale™ or StrongARM™ processor,
which are available from Intel Corporation, of Santa Clara,
Calif. Alternatively, the processor may be from another com-
pany, such as ARM Holdings, Ltd, MIPS, etc. The processor
may be a special-purpose processor, such as, for example, a
network or communication processor, compression engine,
graphics processor, co-processor, embedded processor, or the
like. The processor may be implemented on one or more
chips. The processor may be a part of and/or may be imple-
mented on one or more substrates using any of a number of
process technologies, such as, for example, BiCMOS,
CMOS, or NMOS.

It is contemplated that the processors described herein are
not limited to any system or device. Other system designs and
configurations known in the arts for laptops, desktops, hand-
held PCs, personal digital assistants, engineering worksta-
tions, servers, network devices, network hubs, switches,
embedded processors, digital signal processors (DSPs),
graphics devices, video game devices, set-top boxes, micro
controllers, cell phones, portable media players, hand held
devices, and various other electronic devices, are also suit-
able. In general, a huge variety of systems or electronic
devices capable of incorporating a processor and/or other
execution logic as disclosed herein are generally suitable.

Turning next to FIG. 8, an example of a system on-chip
(SOC) design in accordance with some embodiments is
depicted. As a specific illustrative example, SOC 2000 is
included in user equipment (UE). In one embodiment, UE
refers to any device to be used by an end-user to communi-
cate, such as ahand-held phone, smartphone, tablet, ultra-thin
notebook, notebook with broadband adapter, or any other
similar communication device. Often a UE connects to a base
station or node, which potentially corresponds in nature to a
mobile station (MS) in a GSM network.

Here, SOC 2000 includes 2 cores—2006 and 2007. The
cores 2006 and 2007 may conform to an Instruction Set
Architecture, such as an Intel® Architecture Core™-based
processor, an Advanced Micro Devices, Inc. (AMD) proces-
sor, a MIPS-based processor, an ARM-based processor
design, or a customer thereof, as well as their licensees or
adopters. Cores 2006 and 2007 are coupled to cache control



US 9,251,096 B2

15
2008 that is associated with bus interface unit 2009 and L2
cache 2011 to communicate with other parts of system 2000.
Interconnect 2010 includes an on-chip interconnect, such as
an IOSF, AMBA, or any other interconnect, which potentially
implements one or more aspects of the described invention.

Interface 2010 provides communication channels to the
other components, such as a Subscriber Identity Module
(SIM) 2030 to interface with a SIM card, a boot ROM 2035 to
hold boot code for execution by cores 2006 and 2007 to
initialize and boot SOC 2000, a SDRAM controller 2040 to
interface with external memory (e.g. DRAM 2060), a flash
controller 2045 to interface with non-volatile memory (e.g.
Flash 2065), a peripheral control Q1650 (e.g. Serial Periph-
eral Interface) to interface with peripherals, video codecs
2020 and Video interface 2025 to display and receive input
(e.g. touch enabled input), GPU 2015 to perform graphics
related computations, etc.

In addition, the system illustrates peripherals for commu-
nication, such as a Bluetooth module 2070, 3G modem 2075,
GPS 2085, and WiFi2085. Note that a UE includes a radio for
communication. As a result, these peripheral communication
modules are not all required. However, in a UE some form a
radio for external communication is to be included.

Although not shown for ease of illustration in FIG. 8, in
some embodiments, the SOC 2000 may include some or all of
the functionality of one or more of the cache components 130
described above with reference to FIGS. 1A-1B, 2A-2G, and
3A-3B. For example, core 2006, core 2007, .2 cache 2011,
and/or cache control 2008 may include some or all of the
functionality of the data array 150, the tag array 160, the
control logic 140, and/or the compression logic 145 described
above.

Embodiments may be implemented in code and may be
stored on a non-transitory storage medium having stored
thereon instructions which can be used to program a system to
perform the instructions. The storage medium may include,
but is not limited to, any type of disk including floppy disks,
optical disks, solid state drives (SSDs), compact disk read-
only memories (CD-ROMs), compact disk rewritables (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), magnetic or optical cards, or any
other type of media suitable for storing electronic instruc-
tions.

The following clauses and/or examples pertain to further
embodiments. In one example embodiment may be a proces-
sor for executing instructions, the processor including a cache
data array including a plurality of physical ways, each physi-
cal way to store a baseline way and a victim way; a cache tag
array including a plurality of tag groups, each tag group
associated with a particular physical way and including a first
tag and a second tag, the first tag associated with the baseline
way stored in the particular physical way, and the second tag
associated with the victim way stored in the particular physi-
cal way; and cache control logic to: select a first baseline way
based on a replacement policy, select a first victim way based
on an available capacity of a first physical way including the
first victim way, and move a first data element from the first
baseline way to the first victim way.

In an example, the first baseline way is one of a plurality of
baseline ways of a baseline cache, and wherein the first victim
way is one of a plurality of victim ways of a victim cache.

20

25

30

40

45

16

In an example, the cache control logic may be further to
determine whether a requested data element is stored in the
baseline cache; and in response to a determination that the
requested data element is stored the baseline cache, provide
the requested data element to a requesting entity.

In an example, the cache control logic may be further to
determine whether the requested data element is stored in the
victim cache; in response to a determination that the
requested data element is stored in the victim cache: provide
the requested data element to the requesting entity, and move
the requested data element from the victim cache to the base-
line cache.

In an example, the processor may also include cache com-
pression logic to, prior to the requested data element being
provided to the requesting entity, decompress the requested
data element.

In an example, the cache compression logic may be further
to compress at least some data stored in the baseline cache and
the victim cache.

In an example, the cache control logic may be to determine
whether the requested data element is stored in the victim
cache in response to a determination that the requested data
element is not stored in the baseline cache.

In an example, the cache control logic may be further to, in
response to a determination that the requested data element is
not stored in the baseline cache or the victim cache: obtain the
requested data element from an external source, provide the
requested data element to a requesting entity, and store the
requested data element in the first baseline way.

In an example, the cache compression logic may be further
to, prior to the requested data element being stored in the first
baseline way, compress the requested data element.

In an example, the replacement policy may be one selected
from a group consisting of a least recently used (LRU) policy,
a random replacement policy, a least frequently used policy,
and a most recently used policy.

In an example, the cache control logic may be further to:
determine a size of a second data element stored in a second
baseline way, the second baseline way included in the first
physical way; and determine the available capacity of the first
physical way by subtracting the size of the second data ele-
ment from a maximum capacity size of the first physical way.

In another example embodiment may be a system includ-
ing a processor and a dynamic random access memory
(DRAM) coupled to the processor. The processor may
include at least one core to execute instructions; a plurality of
physical ways, each physical way including a first portion and
a second portion, the first portion to store one of a plurality of
baseline ways, the second portion to store one of a plurality of
victim ways, the plurality of baseline ways forming a baseline
cache, the plurality of victim ways forming a victim cache;
and cache logic to: select a first victim way based on a size of
an associated baseline way, and evict a first data element from
a first baseline way to the first victim way.

In an example, the processor may also include a tag array
including a first plurality of tags corresponding to the plural-
ity of baseline ways, and a second plurality of tags corre-
sponding to the plurality of victim ways.

Inan example, the processor may also include compression
logic to compress data stored in the baseline cache or the
victim cache, and to decompress data read from the baseline
cache or the victim cache.

In an example, the cache logic may be further to receive,
from a requesting entity, a request for a second data element;
upon locating the second data element in the victim cache:
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provide the second data element to the requesting entity, and
move the second data element from the victim cache to the
baseline cache.

In an example, the first victim way and the associated
baseline way may be stored together in a physical way.

In another example embodiment may be a method for
cache management, the method including receiving, by a
cache control logic, a request for a first data element; deter-
mining, by the cache control logic, whether the first data
element is stored in one of a plurality of baseline ways,
wherein each one of the plurality of baseline ways is stored,
along with a corresponding one of a plurality of victim ways,
in one of a plurality of physical ways of a cache memory; in
response to a determination that the first data element is not
stored in one of the plurality of baseline ways: evicting a first
baseline way of the plurality of baseline ways; obtaining the
first data element; and storing the first data element in the first
baseline way.

In an example, obtaining the first data element may
include: determining whether the first data element is stored
in the plurality of victim ways; and in response to a determi-
nation that the first data element is stored in the plurality of
victim ways, moving the first data element from the plurality
of victim ways to the first baseline way.

In an example, obtaining the first data element may further
include in response to a determination that the first data ele-
ment is not stored in the plurality of victim ways, obtaining
the first data element from an external memory.

In an example, the method may also include, in response to
a determination that the first data element is stored in one of
the plurality of baseline ways: decompressing the first data
element; and providing the first data element to a requesting
entity.

In an example, determining whether the first data element
is stored in the plurality of baseline ways or in the plurality of
victim ways may include using a tag array including a first
plurality of tags corresponding to the plurality of baseline
ways, and a second plurality of tags corresponding to the
plurality of victim ways.

In an example, the method may also include compressing
data stored in the plurality of baseline ways or in the plurality
of victim ways.

In an example, evicting the first baseline way may include:
selecting the first baseline way based on a replacement policy;
selecting a first victim way based on an available capacity of
a first physical way including the first victim way; and mov-
ing a second data element from the first baseline way to the
first victim way.

In an example, the method may also include determining a
size of a third data element stored in a second baseline way,
the second baseline way included in the first physical way;
and determining the available capacity of the first physical
way by subtracting the size of the third data element from a
maximum capacity size of the first physical way.

In another example embodiment may be a communication
device arranged to perform the above method.

In another example embodiment may be at least one
machine readable medium comprising a plurality of instruc-
tions that in response to being executed on a computing
device, cause the computing device to carry out the above
method.

In another example embodiment may be an apparatus for
processing instructions, configured to perform the above
method.

In another example embodiment may be an apparatus com-
prising means for performing the above method.
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References throughout this specification to “one embodi-
ment” or “an embodiment” mean that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one implementation
encompassed within the present invention. Thus, appearances
of the phrase “one embodiment” or “in an embodiment” are
not necessarily referring to the same embodiment. Further-
more, the particular features, structures, or characteristics
may be instituted in other suitable forms other than the par-
ticular embodiment illustrated and all such forms may be
encompassed within the claims of the present application.

While the present invention has been described with
respect to a limited number of embodiments for the sake of
illustration, those skilled in the art will appreciate numerous
modifications and variations therefrom. It is intended that the
appended claims cover all such modifications and variations
as fall within the true spirit and scope of this present inven-
tion.

What is claimed is:

1. A processor comprising:

a cache data array including a plurality of physical ways,
each physical way to store a baseline way and a victim
way;

a cache tag array including a plurality of tag groups, each
tag group associated with a particular physical way and
including a first tag and a second tag, the first tag asso-
ciated with the baseline way stored in the particular
physical way, and the second tag associated with the
victim way stored in the particular physical way;

cache control logic to:
select a first baseline way based on a replacement policy;
selecta first victim way based on an available capacity of

afirst physical way including the first victim way; and
move a first data element from the first baseline way to
the first victim way.

2. The processor of claim 1, wherein the first baseline way
is one of a plurality of baseline ways of a baseline cache, and
wherein the first victim way is one of a plurality of victim
ways of a victim cache.

3.The processor of claim 2, wherein the cache control logic
is further to:

determine whether a requested data element is stored in the
baseline cache; and

in response to a determination that the requested data ele-
ment is stored the baseline cache, provide the requested
data element to a requesting entity.

4.The processor of claim 3, wherein the cache control logic
is further to:

determine whether the requested data element is stored in
the victim cache;

in response to a determination that the requested data ele-
ment is stored in the victim cache:

provide the requested data element to the requesting entity,
and

move the requested data element from the victim cache to
the baseline cache.

5. The processor of claim 4, further comprising cache
compression logic to, prior to the requested data element
being provided to the requesting entity, decompress the
requested data element.

6. The processor of claim 5, wherein the cache compres-
sion logic is further to compress at least some data stored in
the baseline cache and the victim cache.

7.The processor of claim 4, wherein the cache control logic
is to determine whether the requested data element is stored in
the victim cache in response to a determination that the
requested data element is not stored in the baseline cache.
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8. The processor of claim 4, wherein the cache control logic
is further to, in response to a determination that the requested
data element is not stored in the baseline cache or the victim
cache:

obtain the requested data element from an external source;

provide the requested data element to a requesting entity;

and

store the requested data element in the first baseline way.

9. The processor of claim 8, wherein the cache compres-
sion logic is further to, prior to the requested data element
being stored in the first baseline way, compress the requested
data element.

10. The processor of claim 1, wherein the replacement
policy is one selected from a group consisting of a least
recently used (LRU) policy, a random replacement policy, a
least frequently used policy, and a most recently used policy.

11. The processor of claim 1, wherein the cache control
logic is further to:

determine a size of a second data element stored ina second

baseline way, the second baseline way included in the
first physical way; and

determine the available capacity of the first physical way

by subtracting the size of the second data element from
a maximum capacity size of the first physical way.

12. A system comprising:

a processor comprising:

at least one core to execute instructions;

aplurality of physical ways, each physical way including a

first portion and a second portion, the first portion to
store one of a plurality of baseline ways, the second
portion to store one of a plurality of victim ways, the
plurality of baseline ways forming a baseline cache, the
plurality of victim ways forming a victim cache;

cache logic to:

select a first victim way based on a size of an associated
baseline way;

evict a first data element from a first baseline way to the first
victim way; and
adynamic random access memory (DRAM) coupled to the
processor.
13. The system of claim 12, the processor further compris-
ing:
atag array including a first plurality of tags corresponding

to the plurality of baseline ways, and a second plurality
of'tags corresponding to the plurality of victim ways.
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14. The system of claim 12, the processor further compris-

ing:

compression logic to compress data stored in the baseline
cache or the victim cache, and to decompress data read
from the baseline cache or the victim cache.

15. The system of claim 12, wherein the cache logic is

further to:

receive, from a requesting entity, arequest for a second data
element;

upon locating the second data element in the victim cache:

provide the second data element to the requesting entity;
and

move the second data element from the victim cache to the
baseline cache.

16. The system of claim 12, wherein the first victim way

and the associated baseline way are stored together in a physi-
cal way.

17. A method, comprising:

receiving, by a cache control logic, a request for a first data
element;

determining, by the cache control logic, whether the first
data element is stored in one of a plurality of baseline
ways, wherein each one of the plurality of baseline ways
is stored, along with a corresponding one of a plurality of
victim ways, in one of a plurality of physical ways of'a
cache memory;

in response to a determination that the first data element is
not stored in one of the plurality of baseline ways:

evicting a first baseline way of the plurality of baseline
ways;

obtaining the first data element; and

storing the first data element in the first baseline way.

18. The method of claim 17, wherein obtaining the first

data element comprises:

determining whether the first data element is stored in the
plurality of victim ways; and

in response to a determination that the first data element is
stored in the plurality of victim ways, moving the first
data element from the plurality of victim ways to the first
baseline way.

19. The method of claim 18, wherein obtaining the first

data element further comprises:

in response to a determination that the first data element is
not stored in the plurality of victim ways, obtaining the
first data element from an external memory.

20. The method of claim 19, further comprising:

in response to a determination that the first data element is
stored in one of the plurality of baseline ways:

decompressing the first data element; and

providing the first data element to a requesting entity.
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